

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS
A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

POST MID TERM (2025-26) MATHEMATICS

Class: XI

Date: 07-01-26

Admission no:

Time: 1hrs

Max Marks: 25

Roll no:

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D and E.
2. Section A has 6 MCQs carrying 1 mark each
3. Section B has 2 questions carrying 02 marks each.
4. Section C has 2 questions carrying 03 marks each.
5. Section D has 1 question carrying 05 marks each.
6. Section E has 1 case-based integrated units of assessment (04 marks each) with sub-parts.
7. All Questions are compulsory.
8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION A

1. Q1. Find the value of:

1M

$$\lim_{y \rightarrow 2} \frac{y^2 - 4}{y - 2}$$

- a) 2
- b) 4
- c) 1
- d) 0

2. Q2. Find the value of:

1M

$$\lim_{y \rightarrow \infty} \frac{2}{y}$$

- a) 0
- b) 1
- c) 2
- d) Infinity

3. Find the value of:

1M

$$\lim_{x \rightarrow 4} \frac{x^2 - 2x - 8}{x - 4}$$

- a) 0
- b) 2
- c) 8
- d) 6

4. Find the value of: 1M

$$\lim_{x \rightarrow 3} \frac{x^2 - 9}{x - 3}$$

- a) 0
- b) 3
- c) Infinity
- d) 6

5. Find the value of: 1M

$$\lim_{x \rightarrow \infty} \frac{x^2 - 9}{x^2 - 3x + 2}$$

- a) 1
- b) 2
- c) 0
- d) Limit does not exist

6. Which of the following limits does NOT yield 1? 1M

- a) $\lim_{x \rightarrow 0} 1$
- b) $\lim_{x \rightarrow \infty} (x^{-2} + x^{-1} + 1)$
- c) $\lim_{x \rightarrow \infty} \frac{1}{e^x} + 1$
- d) $\lim_{x \rightarrow \infty} \frac{x^3 + x^2 + 32x + 1}{x^2 - 3x + 2}$

SECTION B

7. Find the limits: 2M

- (i) $\lim_{x \rightarrow 1} (x^3 - x^2 + 1)$
- (ii) $\lim_{x \rightarrow 3} [x(x + 1)]$

8. Find the derivative of the function $f(x) = 2x^2 + 3x - 5$ at $x = -1$. Also prove that $f'(0) + 3f'(-1) = 0$. 2M

SECTION C

9. Find the derivative of $\cos x$ from first principle. 3M

10. If the function $f(x)$ satisfies $\lim_{x \rightarrow 1} \frac{f(x) - 2}{x^2 - 1} = \pi$, evaluate $\lim_{x \rightarrow 1} f(x)$. 3M

SECTION D

11. Evaluate 5M

- (a) Let a_1, a_2, \dots, a_n be real numbers and define $f(x) = (x - a_1)(x - a_2) \cdots (x - a_n)$.

Evaluate

$$\lim_{x \rightarrow a_k} f(x) \text{ for some } a_k \in \{a_1, a_2, \dots, a_n\}.$$

(b) The function $f(x)$ is defined as

$$f(x) = \begin{cases} mx + n, & 0 \leq x \leq 1 \\ nx^3 + m, & x > 1 \end{cases}$$

For what integer values of m and n does the limit

$\lim_{x \rightarrow 1} f(x)$ exist?

SECTION E

12. A toy manufacturing company programs a cutting machine that works using mathematical functions. The first cutting program uses the function:

$$P(x) = \frac{x^{15} - 1}{x^{10} - 1}$$

To calibrate the machine, the output must be known as x approaches 1.

Answer the following:

(a) State the algebraic identity used to factor the expressions $x^{15} - 1$ and $x^{10} - 1$.

(b) Evaluate: $\lim_{x \rightarrow 1} P(x)$.

(c) Later, the company updates the program to use another expression:

$$Q(x) = 1 + x + x^2 + \dots + x^{10}$$

Find: $\lim_{x \rightarrow 1} Q(x)$.

*****BEST OF LUCK*****